B. Homotopy groups
recall $\pi_{n}(x)=\left[s^{n}, x\right]_{0}$
and since S^{n} is an H^{\prime}-space there is a product on $\pi_{n}(X)$ but what is the product?
given $f, g:\left(5^{n}, p\right) \rightarrow\left(x, x_{0}\right)$
define $f \cdot g$ to be

easy to check that $[f \cdot g]=[f] \cdot[g]$
sometimes it is useful to see $\pi_{n}(x)$ as

$$
\left[\left(D^{n}, \partial D^{q}\right),\left(x, x_{0}\right)\right]
$$

?e. homotopy classes of mops $D^{n} \rightarrow X$
sending $\partial D^{n} \rightarrow x_{0}$
Indeed of $k: D^{n} \rightarrow S^{n}$ collapses ∂D^{n} to $p \in S^{n}$

then $\pi_{n}(X) \rightarrow\left[\left(D^{n}, \partial D^{n}\right),\left(X, x_{0}\right)\right]$ is

$$
[f] \longmapsto[f \circ k]
$$

this is clearly well-defiied and injective and onto since any $f:\left(\theta^{n}, \partial D^{n}\right) \rightarrow\left(x, x_{0}\right)$ factors through $\left(S^{\prime}, \rho\right)$
re given

$$
\begin{aligned}
& \left(D_{1}^{n} \partial D^{n}\right) \xrightarrow{f}\left(X, x_{0}\right) \\
& \chi_{\left(S^{n}, p\right)^{\prime \prime}} \quad \stackrel{--7}{ } \exists \bar{f}
\end{aligned}
$$

similarly any homotopy in $\left[\left(D, \partial D^{n}\right),\left(X, x_{0}\right)\right]$ factors through (S,P) so the map is also surjective

What is the product structure on $\left[\left(D_{1}^{1}, \partial D^{n}\right),\left(x, x_{0}\right)\right]$?
think of D^{1} as $D^{a-1} \times[0,1]$
so given $f: D^{n-1} x[0,1] \rightarrow x$

$$
g: D^{n-1} \times[0,1] \rightarrow X
$$

then define $f \cdot g: D^{n-1} \times[0,1] \rightarrow x$ by

$$
(x, t) \longmapsto \begin{cases}f(x, 2 t) & 0 \leq t \leq 1 / 2 \\ g(x, 2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
$$

note: it is easy to see $\pi_{n}(x)$ is abelian for $n \geq 2$ here the homotopy from fig to g.f is

using these definitions it is also easy to define relative homotopy groups
given a space X a subspace A and $x_{0} \in A$
let $\pi_{n}(x, A)=\left[\left(D_{1}^{n} \partial D^{n}, s_{0}\right),\left(x, A, x_{0}\right)\right]$ where $s_{0} \in \partial D^{n}$
the set of relative homotopy classes of $D^{n} \rightarrow X$ sending ∂D^{n} to A and s_{0} to x_{0}
the product structure is given $f, g: D^{n} \rightarrow X$

note: this product does not make sense on $\pi(x, A)$

to prove $\pi_{n}(X, A)$ is a group it is helpful to give a different definition

$$
\text { let } \begin{aligned}
D^{n} & =[0,1]^{n} \text { and } \\
V & =\frac{\partial D^{n}-\left(D^{n-1} \times\{1\}\right)}{}=\left(D^{n-1} \times\{0\}\right) \cup \partial D^{n-1} \times[0,1]
\end{aligned}
$$

exencise: $\left[\left(D_{1}^{n} \partial D^{n}, S_{0}\right),\left(X, A, x_{0}\right)\right]_{0}$ is
in one-to-one correspondence with

$$
\begin{gathered}
{\left[\left(D^{n}, \partial D^{n}, J\right),\left(X, A, x_{0}\right)\right]_{0}} \\
\left(\operatorname{note}\left(D^{n}, \partial D^{n}, \sigma\right) / J \cong\left(D^{n}, \partial D^{n}, s_{0}\right)\right)
\end{gathered}
$$

Now given $f_{i} g \in \pi_{n}(X, A)$ define

$$
f \cdot g\left(x_{1}, x_{n}\right)= \begin{cases}f\left(2 x_{1}, x_{2} \ldots x_{n}\right) & x_{1} \in[0,1 / 2] \\ g\left(2 x_{1}-1, x_{2} \ldots x_{n}\right) & x_{1} \in[1 / 2,1]\end{cases}
$$

and $f^{-1}\left(x_{1}, \ldots x_{n}\right)=f\left(1-x_{1}, x_{2}, \ldots x_{1}\right)$
exercise:

1) show $\pi(X, A)$ a group with identity the constant map, if $n \geq 2$
2) $\pi_{n}(x, A)$ abelian for $n \geq 3$
3) $\pi_{1}(X, A)$ is just a set
(ne. product doesn't make sense)
4) $\pi_{n}\left(X, x_{0}, x_{0}\right)=\pi_{n}\left(x, x_{0}\right)$
the following lemma will be useful
lemma 16:
$f:\left(D_{1}^{1} \partial D^{n}, s_{0}\right) \rightarrow\left(X, A, x_{0}\right)$ is 0 in $\pi_{n}(x, A)$

$$
\Leftrightarrow
$$

it is homotopic rel ∂D^{n} and so to a map whose image is in A

Proof: (\Leftarrow) suppose we have such a homotopy f to g
we know D^{n} deformation retracts to so

$$
\begin{aligned}
& H: D^{n} \times[0,1] \rightarrow D^{n} \\
& \\
& H(x, 0)=x \quad H(x, 1)=s_{0} \quad H\left(s_{0}, t\right)=s_{0}
\end{aligned}
$$

now $g \circ H$ is a homstopy from g to constant map
$\therefore f$ is trivial is $\pi_{n}(X, A)$
\Rightarrow if $[f]=0$ in $\pi_{n}(X, A)$ then
$\exists H: D^{n} \times[0,1] \rightarrow X$ such that

$$
\begin{aligned}
& H(x, 0)=f(x) \\
& H(x, 1)=x_{0} \\
& H(x, t) \in A \quad \forall x \in \partial D^{n}
\end{aligned}
$$

now $\left.H\right|_{D^{n} \times\{1\} \cup\left(\partial D^{n} \cup[0,1]\right)}$
is a map of $D^{n} \rightarrow A$ with $\partial D^{n} \rightarrow A$ and $s_{0} \mapsto x_{0}$
So we can use H on $D^{n} \times[0,1]$ to give a homotopy f to a mop with image in A
you can write this out explicitly but here is the idea
note: \exists a homeomorphism $D^{n} \times[0,1] \rightarrow D^{n+1}$

define ϕ on ∂ and wo ne
there is also a map $D^{n} \times[0,1] \xrightarrow{\psi} D^{n+1}$ that collapses $\partial D^{n} \times[0,1]$ to equator
 define $\psi_{\text {on }}$ ∂ and cone
now Ho $\phi^{-1} \circ 4$ is the homotopy
note: (1) $\left(A, x_{0}\right) \subset_{i}\left(X, x_{0}\right) \subset_{j}(X, A)$ inclusions then i, j is duce mops

$$
\pi_{n}(A) \xrightarrow{2_{*}} \pi_{n}(X) \xrightarrow{\partial_{*}} \pi_{n}(X, A)
$$

(2) If $f:\left(D^{n}, \partial D^{n}, J\right) \rightarrow\left(X, A, x_{0}\right)$
then define $\partial f:(\partial D, N) \rightarrow\left(A, x_{0}\right)$ to be $\left.f\right|_{\partial D^{n}}$ this induces a map

$$
\pi_{n}(X, A) \rightarrow \pi_{n-1}(A)
$$

note: $\pi_{1-1}(A)=\left[\left(\partial D^{n}, J\right),\left(A, x_{0}\right)\right]_{0}$
erencise: show this is well-defined.
Th" $17:$
given $\left(X, A, x_{0}\right)$ we have a long exact sequence

$$
\ldots \rightarrow \pi_{n}(A) \xrightarrow{\tau_{*}} \pi_{n}(x) \xrightarrow{\partial_{*}} \pi_{n}(x, A) \xrightarrow{\partial} \pi_{n-1}(A) \rightarrow \ldots
$$

(and it is equivariant under $\pi_{1}(A)$ action)

Proof: clearyly $J_{*} 0 z_{*}=0$ by lemma 16 now if $[f] \in \operatorname{ker} J_{*}$, then
$f:\left(D^{n}, \partial D^{n}\right) \rightarrow(X, A)$ and
3 homotopy $H: D^{a} \times[0,1] \rightarrow X$ st.

1) $H(x, 0)=f(x)$
2) $H(x, 1) \in A$
3) $H(x, t) \in A \quad \forall t$ if $x \in \partial D^{n}$
4) $H\left(S_{0},+\right)=x_{0}$
note: $D^{\prime}=D^{n} \times\{1\} \cup \partial D^{n} \times[0,1]$ is a disk and

$$
\left.H\right|_{D^{\prime}}: D^{\prime} \rightarrow A \quad \text { sf. } \quad H\left(\partial D^{\prime}\right)=x_{0}
$$

so $g=H l_{D^{\prime}}: D^{n} \rightarrow A$ is in $\pi_{n}(A)$ and as in proof of lemma 16 H gives a homotopy from f to g in $\pi_{1}(x)$
$\therefore[f] \epsilon \operatorname{in} \eta_{*}$ and we hove $\operatorname{in} \tau_{*}=$ her J_{*}

Suppose $[f] \in \pi_{n}(X, A)$ and $\partial[f]=[0]$
so \exists homotopy $H: S^{n-1} \times[0,1] \rightarrow A$ sit.

$$
\begin{aligned}
& H\left(x_{c}, 0\right)=f(x) \\
& H(x, 1)=x_{0} \\
& H\left(s_{0}, t\right)=x_{0}
\end{aligned}
$$

$D^{\prime}=D^{n} \cup S^{n-1} x[0,1]$ is a dis k and

$$
f^{\prime}: D^{\prime} \rightarrow X: x \longmapsto \begin{cases}f(x) & x \in D^{n} \\ H(x) & x \in S^{n-1} x[0,1]\end{cases}
$$

and $f^{\prime}\left(\partial D^{\prime}\right)=x_{0}$ so $\left[f^{\prime}\right] \in \pi_{n}(x)$
easy to check $f^{\prime} \sim f$ in $\pi_{n}(x, A)$ so

$$
J_{*}\left(\left[f^{\prime}\right]\right)=[f] \text { and her } \partial<\operatorname{in} J_{*}
$$

now if $[f] \in \pi_{n}(x)$ then $f\left(\partial D^{n}\right)=x_{0}$
so $\left.\partial[)_{*}([f])\right]=[$ constant $]=[0]$ in $\pi_{n-1}(A)$
so her $\partial=\operatorname{im} J_{*}$
exercise: show in $\partial=$ ger η_{*}
Th 쓰 18:
let $p: \tilde{X} \rightarrow X$ be a connected covering space
Then $\pi_{n}\left(\tilde{X}_{1} \tilde{x}_{0}\right) \cong \pi_{n}\left(x, p\left(\tilde{x_{0}}\right)\right)$ for all $n \geq 2$ and $\tilde{x}_{0} \in X$

Proof: $\rho_{*}: \pi_{n}\left(\tilde{x}, \tilde{x_{0}}\right) \rightarrow \pi_{n}\left(x_{1} p\left(\tilde{x_{0}}\right)\right)$ is a homomorphism recall given $f: Y \rightarrow X$ with $y_{0} \in Y$ st. $f\left(y_{0}\right)=p\left(x_{0}\right)$
lifting. (then $\exists \tilde{f}: Y \rightarrow \tilde{x}$ s.t. $f\left(y_{0}\right)=\tilde{x}_{0}$ and po $\left.\tilde{f}=f=10 i o n\right\}$
criter criterion

$$
F_{*}\left(\pi,\left(y_{1}, y_{0}\right)\right)<p_{*}\left(\pi,\left(\tilde{x}, x_{0}\right)\right)
$$

P_{x} is surjective for $n \geq 2$
indeed, given $[f] \in \pi_{n}\left(X, p\left(\tilde{x}_{0}\right)\right)$

$$
f_{*}\left(\pi_{1}\left(S_{,}^{n}, s_{0}\right)\right)=\{e\}<\rho_{x}\left(\pi_{1}\left(\tilde{x}, \tilde{x}_{0}\right)\right)
$$

so $\exists \tilde{f}: s^{n} \rightarrow \tilde{x}$ st $\tilde{f}\left(s_{0}\right)=\tilde{x}_{0}$ and $p \cdot \tilde{f}=f$

$$
\therefore p_{*}([\tilde{f}])=[f]
$$

p_{*} is injective for $n \geq 2$
indeed suppose $\rho_{x}([f])=[0]$ in $\pi_{n}\left(x, \rho\left(x_{0}\right)\right)$
then \exists a homotopy $H: S^{n} x[0,1] \rightarrow X$

$$
\text { s.t. } \begin{aligned}
& H(x, 0)=p \circ f(x) \\
& H(x, 1)=p\left(\tilde{x}_{0}\right) \\
& H\left(s_{0}, t\right)=p\left(\tilde{x}_{0}\right)
\end{aligned}
$$

recall waving spaces satisfy homotopy lifting so $\exists \tilde{H}: S^{n} \times[0,1] \rightarrow X$ st. $\tilde{H}(x, 0)=f(x)$
τ discreat $\begin{gathered}\text { space }\end{gathered} \tilde{H}\left(s_{0}, t\right)=\tilde{x}_{0}$
$\therefore[f]=[0]$ in $\pi_{n}\left(\tilde{x}, x_{0}\right)$

